FWU-Logo  © 2008-10 FWU
info@fwu.de
Schnellsuche

suchen nach: 
Sie haben seit längerer Zeit keine Eingabe vorgenommen.
Ihre Session wurde daher aus Sicherheitsgründen beendet.

Jahr  
Titel  
Datensatz anzeigen

[A.16.02] Waagerechte / schiefe Asymptoten
Film

Waagerechte Asymptoten bzw. schiefe Asymptoten erhält man, in dem man „x“ in der Funktion gegen + oder – unendlich streben lässt. Wie das im Detail geht, hängt vom Funktionstyp ab. (Siehe daher bitte auf Querverweise auf die verschiedenen Funktionen unter „verwandte Themen“).



Datensatz anzeigen

[A.16] Asymptoten
Film

Asymptoten sind Geraden, an welche sich Funktionen annähern. Man kann einerseits senkrechte Asymptoten berechnen, und mit einer anderen Rechnung kann man waagerechte bzw. schiefe Asymptote berechnen. Das Ziel der Asymptotenberechnung ist zu erfahren, wie sich Funktionen im Unendlichen verhalten. Ganzrationale Funktionen (Polynome) haben nie eine Asymptote.



Datensatz anzeigen

[A.17.01] Symmetrie von ganzrationalen Funktionen
Film

Symmetrie von ganzrationalen Funktionen (Polynomen) erkennt man sehr einfach an den Hochzahlen: Gibt es nur gerade Hochzahlen, so ist die Funktion symmetrisch zur y-Achse. Gibt es nur ungerade Hochzahlen, so ist f(x) symmetrisch zum Ursprung. Gibt es gemischte Hochzahlen, so ist f(x) weder zum Ursprung, noch zur y-Achse symmetrisch.



Datensatz anzeigen

[A.17.02] Symmetrie am Ursprung bzw. an y-Achse
Film

Die einfachste Symmetrie (und die am häufigsten gefragte) ist Symmetrie zum Ursprung oder zur y-Achse. Für Symmetrie zum Ursprung gilt: f(-x)=-f(x). Für Symmetrie zur y-Achse gilt: f(-x)=f(x). Hat man keinen Verdacht, welche Symmetrie die Funktion haben könnte, setzt man in f(x) statt jedem „x“ ein „(-x)“ ein und lässt sich überraschen, was raus kommt.



Datensatz anzeigen

[A.17.03] Symmetrie über Formeln
Film

Ist eine Funktion punktsymmetrisch zu irgendeinem Symmetriepunkt S(a|b), so gilt die Formel: f(a-x)+f(a+x)=2b. Ist eine Funktion achsensymmetrisch zu irgendeiner senkrechten Symmetrieachse x=a, so gilt die Formel: f(a-x)=f(a+x).



Datensatz anzeigen

[A.17.04] Symmetrie über Verschieben
Film

Ist eine Funktion punktsymmetrisch zu irgendeinem Symmetriepunkt S(a|b), so verschiebt man die Funktion so weit nach links/rechts und oben/unten, bis der Symmetriepunkt im Ursprung liegt. Nun beweist man von der verschobenen Funktion die Symmetrie zum Ursprung. Ist eine Funktion achsensymmetrisch zu irgendeiner senkrechten Symmetrieachse x=a, so verschiebt man die Funktion so weit nach links/rechts, bis die Symmetrieachse auf der y-Achse liegt. Nun beweist man von der verschobenen Funktion die Symmetrie zur y-Achse.



Datensatz anzeigen

[A.17] Symmetrie
Film

Funktionen können zwei Typen von Symmetrie aufweisen: Punktsymmetrie oder Achsensymmetrie zu einer senkrechten Achse. (Eine Funktion kann zu waagerechten Geraden nicht symmetrisch sein!)



Datensatz anzeigen

[A.18.01] Überblick
Film

Kurzer Überblick über die Vorgehensweise bei Integralen: Man kann eine Fläche berechnen, indem man das Integral von „oberer Funktion“ minus „unterer Funktion“ bildet. (Eine „Funktion integrieren“ ist also nichts anderes als das Bilden der Stammfunktion). In die Stammfunktion setzt man nun die beiden Integralgrenzen ein und zieht die Ergebnisse von einander ab.



Datensatz anzeigen

[A.18.02] Flächen zwischen f(x) und x-Achse
Film

Berechnet man den Flächeninhalt zwischen einer Funktion und der x-Achse, integriert man diese Funktion und setzt die Integralgrenzen in die Stammfunktion ein. Die Integralgrenzen sind entweder die Nullstellen oder sie sind in der Aufgabenstellung gegeben.



Datensatz anzeigen

[A.18.03] Flächen zwischen zwei Funktionen
Film

Braucht man die Fläche zwischen zwei Funktionen, berechnet man das Integral von der Differenz beider Funktionen. (Man zieht die Funktionen also voneinander ab und leitet das Ergebnis auf). Die Integralgrenzen sind entweder die Schnittpunkte der Funktionen oder sie sind in der Aufgabenstellung gegeben. Zum Schluss setzt man beide Grenzen in die „Aufleitung“ ein und zieht die Ergebnisse von einander ab.



Datensatz anzeigen

[A.18.04] Flächen zwischen drei Funktionen
Film

Wenn man eine Fläche zwischen drei Funktionen berechnen soll, geht das nicht direkt. Man muss die Fläche aufteilen, so dass sich sowohl unterhalb als auch oberhalb der Fläche nur je EINE Funktion befindet. Meist befindet sich zwischen den linker und rechter Grenze der eingeschlossenen Flächen irgendein Schnittpunkt von zwei Funktionen. An diesem Schnittpunkt teilt man die Fläche auf. (Meistens.)



Datensatz anzeigen

[A.18.05] Uneigentliche Integrale (e-Funktionen und Hyperbeln)
Film

Eine uneigentliches Integral ist einfach nur ein Integral einer Fläche, die unendlich lang und dünn ist. Eine der Grenzen ist daher meistens auch „unendlich“. Zur Schreibweise: Normalweise darf man „unendlich“ nicht als Integralgrenze hinschreiben. Also schreibt man „u“ (oder irgendeinen anderen Buchstaben) hin, lässt zum Schluss „u“ gegen unendlich laufen und schaut, was denn nun als Ergebnis rauskommt (also eine normale Zahl oder etwa doch Unendlich)?



Datensatz anzeigen

[A.18.06] Rotationsvolumen
Film

Bei Rotation einer Funktion um die x-Achse, entsteht meist ein komischer Rotationskörper, der keinen Namen (was diesen natürlich psychisch sehr belastet). Diesen berechnet man mit einer einfachen Formel, die besagt, dass man die Funktion zuerst quadriert, dann erst integriert. Integralgrenzen einsetzen und das Ergebnis mit Pi multiplizieren. (Rotiert eine Funktion um die y-Achse, macht man das Gleiche mit der Umkehrfunktion. Dieses wird hier nicht erklärt.)



Datensatz anzeigen

[A.18.07] Mittelwert bzw. Durchschnitt
Film

Ein mittlerer Funktionswert oder durchschnittlicher y-Wert ist nichts anderes als ein Mittelwert bzw. ein Durchschnitt. Man berechnet diesen mit einer recht einfachen Formel, die über´s Integral geht.



Datensatz anzeigen

[A.18.08] Dreiecksflächen
Film

Sind Flächen von Geraden umschlossen, kann man diese Flächen oft als Dreiecksflächen angehen. Diese Dreiecksflächen kann man über A=1/2*g*h bestimmen (KANN man, MUSS man nicht!). Das Integral einer Geraden mit den Koordinatenachsen ist z.B. oft gefragt, das ist ein rechtwinkliges Dreieck.



Datensatz anzeigen

[A.18.09] Zusammengesetzte Funktionen
Film

Zusammengesetzte Funktionen (oder auch: abschnittsweise definierte Funktionen) bestehen aus zwei (oder mehreren) Funktionen. In bestimmten Bereichen gilt dabei die eine Funktion, im anderen Bereich gilt die zweite Funktion. Im Prinzip braucht man nun zwei Integrale, eines für jede Funktion.



Datensatz anzeigen

[A.18] Integrale und Flächeninhalte
Film

Will man den Flächeninhalt berechnen, z.B. bei der Flächenberechnung von Schaubildern, dann kommen Integrale ins Spiel. Die Integralberechnung zählt zu den wichtigen Themen der Mathematik. Das Integral ist ein Oberbegriff für das unbestimmte und das bestimmte Integral. Die Berechnung von Integralen heißt Integration.



Datensatz anzeigen

[A.19.01] Bsp.1 zur Funktionsanalyse
Film

Wir führen eine Funktionsanalyse einer Funktion durch, die Symmetrie zur y-Achse aufweist und zwei Berührpunkte mit der x-Achse aufweist.



Datensatz anzeigen

[A.19.02] Bsp.2 zu Funktionsanalyse
Film

In dieser Funktionsuntersuchung passiert erst mal nichts Außergewöhnliches, außer dem Auftauchen dreifachen Nullstelle (= Sattelpunkt). Als „Bonbon“ bestimmen wir die Wendetangente und ergötzen uns an einer einfachen Flächenberechnung.



Datensatz anzeigen

[A.19.04] Bsp.4 zu Funktionsanalyse
Film

Ach, wie schön ist eine Funktionsanalyse mit einer Kurvenschar. Hier erfüllen wir uns diesen Wunsch. Wir führen eine Kurvendiskussion mit einer (relativ) einfachen Funktionsschar, also einer Funktion, die einen Parameter enthält.






Jahr  
Titel  
Datensatz anzeigen

[A.16.02] Waagerechte / schiefe Asymptoten
Film

Waagerechte Asymptoten bzw. schiefe Asymptoten erhält man, in dem man „x“ in der Funktion gegen + oder – unendlich streben lässt. Wie das im Detail geht, hängt vom Funktionstyp ab. (Siehe daher bitte auf Querverweise auf die verschiedenen Funktionen unter „verwandte Themen“).



Datensatz anzeigen

[A.16] Asymptoten
Film

Asymptoten sind Geraden, an welche sich Funktionen annähern. Man kann einerseits senkrechte Asymptoten berechnen, und mit einer anderen Rechnung kann man waagerechte bzw. schiefe Asymptote berechnen. Das Ziel der Asymptotenberechnung ist zu erfahren, wie sich Funktionen im Unendlichen verhalten. Ganzrationale Funktionen (Polynome) haben nie eine Asymptote.



Datensatz anzeigen

[A.17.01] Symmetrie von ganzrationalen Funktionen
Film

Symmetrie von ganzrationalen Funktionen (Polynomen) erkennt man sehr einfach an den Hochzahlen: Gibt es nur gerade Hochzahlen, so ist die Funktion symmetrisch zur y-Achse. Gibt es nur ungerade Hochzahlen, so ist f(x) symmetrisch zum Ursprung. Gibt es gemischte Hochzahlen, so ist f(x) weder zum Ursprung, noch zur y-Achse symmetrisch.



Datensatz anzeigen

[A.17.02] Symmetrie am Ursprung bzw. an y-Achse
Film

Die einfachste Symmetrie (und die am häufigsten gefragte) ist Symmetrie zum Ursprung oder zur y-Achse. Für Symmetrie zum Ursprung gilt: f(-x)=-f(x). Für Symmetrie zur y-Achse gilt: f(-x)=f(x). Hat man keinen Verdacht, welche Symmetrie die Funktion haben könnte, setzt man in f(x) statt jedem „x“ ein „(-x)“ ein und lässt sich überraschen, was raus kommt.



Datensatz anzeigen

[A.17.03] Symmetrie über Formeln
Film

Ist eine Funktion punktsymmetrisch zu irgendeinem Symmetriepunkt S(a|b), so gilt die Formel: f(a-x)+f(a+x)=2b. Ist eine Funktion achsensymmetrisch zu irgendeiner senkrechten Symmetrieachse x=a, so gilt die Formel: f(a-x)=f(a+x).



Datensatz anzeigen

[A.17.04] Symmetrie über Verschieben
Film

Ist eine Funktion punktsymmetrisch zu irgendeinem Symmetriepunkt S(a|b), so verschiebt man die Funktion so weit nach links/rechts und oben/unten, bis der Symmetriepunkt im Ursprung liegt. Nun beweist man von der verschobenen Funktion die Symmetrie zum Ursprung. Ist eine Funktion achsensymmetrisch zu irgendeiner senkrechten Symmetrieachse x=a, so verschiebt man die Funktion so weit nach links/rechts, bis die Symmetrieachse auf der y-Achse liegt. Nun beweist man von der verschobenen Funktion die Symmetrie zur y-Achse.



Datensatz anzeigen

[A.17] Symmetrie
Film

Funktionen können zwei Typen von Symmetrie aufweisen: Punktsymmetrie oder Achsensymmetrie zu einer senkrechten Achse. (Eine Funktion kann zu waagerechten Geraden nicht symmetrisch sein!)



Datensatz anzeigen

[A.18.01] Überblick
Film

Kurzer Überblick über die Vorgehensweise bei Integralen: Man kann eine Fläche berechnen, indem man das Integral von „oberer Funktion“ minus „unterer Funktion“ bildet. (Eine „Funktion integrieren“ ist also nichts anderes als das Bilden der Stammfunktion). In die Stammfunktion setzt man nun die beiden Integralgrenzen ein und zieht die Ergebnisse von einander ab.



Datensatz anzeigen

[A.18.02] Flächen zwischen f(x) und x-Achse
Film

Berechnet man den Flächeninhalt zwischen einer Funktion und der x-Achse, integriert man diese Funktion und setzt die Integralgrenzen in die Stammfunktion ein. Die Integralgrenzen sind entweder die Nullstellen oder sie sind in der Aufgabenstellung gegeben.



Datensatz anzeigen

[A.18.03] Flächen zwischen zwei Funktionen
Film

Braucht man die Fläche zwischen zwei Funktionen, berechnet man das Integral von der Differenz beider Funktionen. (Man zieht die Funktionen also voneinander ab und leitet das Ergebnis auf). Die Integralgrenzen sind entweder die Schnittpunkte der Funktionen oder sie sind in der Aufgabenstellung gegeben. Zum Schluss setzt man beide Grenzen in die „Aufleitung“ ein und zieht die Ergebnisse von einander ab.



Datensatz anzeigen

[A.18.04] Flächen zwischen drei Funktionen
Film

Wenn man eine Fläche zwischen drei Funktionen berechnen soll, geht das nicht direkt. Man muss die Fläche aufteilen, so dass sich sowohl unterhalb als auch oberhalb der Fläche nur je EINE Funktion befindet. Meist befindet sich zwischen den linker und rechter Grenze der eingeschlossenen Flächen irgendein Schnittpunkt von zwei Funktionen. An diesem Schnittpunkt teilt man die Fläche auf. (Meistens.)



Datensatz anzeigen

[A.18.05] Uneigentliche Integrale (e-Funktionen und Hyperbeln)
Film

Eine uneigentliches Integral ist einfach nur ein Integral einer Fläche, die unendlich lang und dünn ist. Eine der Grenzen ist daher meistens auch „unendlich“. Zur Schreibweise: Normalweise darf man „unendlich“ nicht als Integralgrenze hinschreiben. Also schreibt man „u“ (oder irgendeinen anderen Buchstaben) hin, lässt zum Schluss „u“ gegen unendlich laufen und schaut, was denn nun als Ergebnis rauskommt (also eine normale Zahl oder etwa doch Unendlich)?



Datensatz anzeigen

[A.18.06] Rotationsvolumen
Film

Bei Rotation einer Funktion um die x-Achse, entsteht meist ein komischer Rotationskörper, der keinen Namen (was diesen natürlich psychisch sehr belastet). Diesen berechnet man mit einer einfachen Formel, die besagt, dass man die Funktion zuerst quadriert, dann erst integriert. Integralgrenzen einsetzen und das Ergebnis mit Pi multiplizieren. (Rotiert eine Funktion um die y-Achse, macht man das Gleiche mit der Umkehrfunktion. Dieses wird hier nicht erklärt.)



Datensatz anzeigen

[A.18.07] Mittelwert bzw. Durchschnitt
Film

Ein mittlerer Funktionswert oder durchschnittlicher y-Wert ist nichts anderes als ein Mittelwert bzw. ein Durchschnitt. Man berechnet diesen mit einer recht einfachen Formel, die über´s Integral geht.



Datensatz anzeigen

[A.18.08] Dreiecksflächen
Film

Sind Flächen von Geraden umschlossen, kann man diese Flächen oft als Dreiecksflächen angehen. Diese Dreiecksflächen kann man über A=1/2*g*h bestimmen (KANN man, MUSS man nicht!). Das Integral einer Geraden mit den Koordinatenachsen ist z.B. oft gefragt, das ist ein rechtwinkliges Dreieck.



Datensatz anzeigen

[A.18.09] Zusammengesetzte Funktionen
Film

Zusammengesetzte Funktionen (oder auch: abschnittsweise definierte Funktionen) bestehen aus zwei (oder mehreren) Funktionen. In bestimmten Bereichen gilt dabei die eine Funktion, im anderen Bereich gilt die zweite Funktion. Im Prinzip braucht man nun zwei Integrale, eines für jede Funktion.



Datensatz anzeigen

[A.18] Integrale und Flächeninhalte
Film

Will man den Flächeninhalt berechnen, z.B. bei der Flächenberechnung von Schaubildern, dann kommen Integrale ins Spiel. Die Integralberechnung zählt zu den wichtigen Themen der Mathematik. Das Integral ist ein Oberbegriff für das unbestimmte und das bestimmte Integral. Die Berechnung von Integralen heißt Integration.



Datensatz anzeigen

[A.19.01] Bsp.1 zur Funktionsanalyse
Film

Wir führen eine Funktionsanalyse einer Funktion durch, die Symmetrie zur y-Achse aufweist und zwei Berührpunkte mit der x-Achse aufweist.



Datensatz anzeigen

[A.19.02] Bsp.2 zu Funktionsanalyse
Film

In dieser Funktionsuntersuchung passiert erst mal nichts Außergewöhnliches, außer dem Auftauchen dreifachen Nullstelle (= Sattelpunkt). Als „Bonbon“ bestimmen wir die Wendetangente und ergötzen uns an einer einfachen Flächenberechnung.



Datensatz anzeigen

[A.19.04] Bsp.4 zu Funktionsanalyse
Film

Ach, wie schön ist eine Funktionsanalyse mit einer Kurvenschar. Hier erfüllen wir uns diesen Wunsch. Wir führen eine Kurvendiskussion mit einer (relativ) einfachen Funktionsschar, also einer Funktion, die einen Parameter enthält.